skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Asel, Thaddeus_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report the use of suboxide molecular-beam epitaxy (S-MBE) to grow α-(AlxGa1−x)2O3 films on (110) sapphire substrates over the 0 < x < 0.95 range of aluminum content. In S-MBE, 99.98% of the gallium-containing molecular beam arrives at the substrate in a preoxidized form as gallium suboxide (Ga2O). This bypasses the rate-limiting step of conventional MBE for the growth of gallium oxide (Ga2O3) from a gallium molecular beam and allows us to grow fully epitaxial α-(AlxGa1−x)2O3 films at growth rates exceeding 1 µm/h and relatively low substrate temperature (Tsub = 605 ± 15 °C). The ability to grow α-(AlxGa1−x)2O3 over the nominally full composition range is confirmed by Vegard’s law applied to the x-ray diffraction data and by optical bandgap measurements with ultraviolet–visible spectroscopy. We show that S-MBE allows straightforward composition control and bandgap selection for α-(AlxGa1−x)2O3 films as the aluminum incorporation x in the film is linear with the relative flux ratio of aluminum to Ga2O. The films are characterized by atomic-force microscopy, x-ray diffraction, and scanning transmission electron microscopy (STEM). These α-(AlxGa1−x)2O3 films grown by S-MBE at record growth rates exhibit a rocking curve full width at half maximum of ≊ 12 arc secs, rms roughness <1 nm, and are fully commensurate for x ≥ 0.5 for 20–50 nm thick films. STEM imaging of the x = 0.78 sample reveals high structural quality and uniform composition. Despite the high structural quality of the films, our attempts at doping with silicon result in highly insulating films. 
    more » « less
  2. Optimizing thermal anneals of Si-implanted β-Ga2O3 is critical for low resistance contacts and selective area doping. We report the impact of annealing ambient, temperature, and time on the activation of room temperature ion-implanted Si in β-Ga2O3 at concentrations from 5 × 1018 to 1 × 1020 cm−3, demonstrating full activation (>80% activation, mobilities >70 cm2/V s) with contact resistances below 0.29 Ω mm. Homoepitaxial β-Ga2O3 films, grown by plasma-assisted molecular beam epitaxy on Fe-doped (010) substrates, were implanted at multiple energies to yield 100 nm box profiles of 5 × 1018, 5 × 1019, and 1 × 1020 cm−3. Anneals were performed in an ultra-high vacuum-compatible quartz furnace at 1 bar with well-controlled gas compositions. To maintain β-Ga2O3 stability, pO2 must be greater than 10−9 bar. Anneals up to pO2 = 1 bar achieve full activation at 5 × 1018 cm−3, while 5 × 1019 cm−3 must be annealed with pO2 ≤ 10−4 bar, and 1 × 1020 cm−3 requires pO2 < 10−6 bar. Water vapor prevents activation and must be maintained below 10−8 bar. Activation is achieved for anneal temperatures as low as 850 °C with mobility increasing with anneal temperatures up to 1050 °C, though Si diffusion has been reported above 950 °C. At 950 °C, activation is maximized between 5 and 20 min with longer times resulting in decreased carrier activation (over-annealing). This over-annealing is significant for concentrations above 5 × 1019 cm−3 and occurs rapidly at 1 × 1020 cm−3. Rutherford backscattering spectrometry (channeling) suggests that damage recovery is seeded from remnant aligned β-Ga2O3 that remains after implantation; this conclusion is also supported by scanning transmission electron microscopy showing retention of the β-phase with inclusions that resemble the γ-phase. 
    more » « less
  3. β-Ga2O3 is a promising ultra-wide bandgap semiconductor whose properties can be further enhanced by alloying with Al. Here, using atomic-resolution scanning transmission electron microscopy, we find the thermodynamically unstable γ-phase is a ubiquitous structural defect in both β-(AlxGa1−x)2O3 films and doped β-Ga2O3 films grown by molecular beam epitaxy. For undoped β-(AlxGa1−x)2O3 films, we observe γ-phase inclusions between nucleating islands of the β-phase at lower growth temperatures (∼500–600 °C). In doped β-Ga2O3, a thin layer of the γ-phase is observed on the surfaces of films grown with a wide range of n-type dopants and dopant concentrations. The thickness of the γ-phase layer was most strongly correlated with the growth temperature, peaking at about 600 °C. Ga interstitials are observed in the β-phase, especially near the interface with the γ-phase. By imaging the same region of the surface of a Sn-doped β-(AlxGa1−x)2O3 after ex situ heating up to 400 °C, a γ-phase region is observed to grow above the initial surface, accompanied by a decrease in Ga interstitials in the β-phase. This suggests that the diffusion of Ga interstitials toward the surface is likely the mechanism for growth of the surface γ-phase and more generally that the more-open γ-phase may offer diffusion pathways to be a kinetically favored and early forming phase in the growth of Ga2O3. However, more modeling and simulation of the γ-phase and the interstitials are needed to understand the energetics and kinetics, the impact on electronic properties, and how to control them. 
    more » « less